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Abstract-Three general solutions are obtained for the coupled dynamic equations for a transversely
isotropic piezoelectric medium. These solutions are expressed in terms of the two functions J/J and
F, where J/J satisfies a second-degree partial differential equation and F a sixth-degree partial
differential equation, respectively, If the terms concerning the derivatives of time are removed, the
results become three general solutions for the corresponding equilibrium equations, in which the
function F can be represented by functions Fj (i = 1,2,3), each of which satisfies a second-degree
partial differential equation by utilizing a generalized Almansi theorem; and the solution Wang and
Zheng [Int. J. Solids Structures 32, 105-115 (1995)] obtained is proved to be consistent with one
case of one of the three general solutions. When the constants ell = e3l = e33 = 0 the piezo-electric
coupling is absent; then, two of the solutions reduce to the elasticity general solutions for a
transversely isotropic medium, one of which is the result Hu [Acta Scientia Sin. 2(2), 145-151
(1953)] obtained; the other one has not been published. Last, the solution in the limiting explicit
form for the problem for a half-space with concentrated loads at the boundary is obtained by
utilizing the general solutions, Copyright ~ 1996 Elsevier Science Ltd.

I. INTRODUCTION

According to a survey made by Rao and Sunar (1994), the control of flexible structures
has attracted a considerable amount of research in recent years, The characteristic phenom­
ena of piezo-electric materials, the direct and converse piezo-electric effects, permit them to
be used as sensors and actuators in a control system, This motivated the investigations of
these kinds of materials over the course of many years and many important achievements
have been made in the subject such as fracture mechanics (Sosa, 1992), laminated structures
(Sosa and Castro, 1993), numerical analysis (Sung Kyu Ha et al., 1993) and structural
control (Rao and Sunar, 1994). Wang and Zheng (1995) first carried out investigations
about the general solution for three-dimensional problems for the piezo-electric media,

As suggested by Sosa and Castro (1993), the governing equations for the theory of
piezo-electricity are:

(JilJ =
cPu

-f+p-', at2
(1)

E;= -¢.,

(2)

(3)

(4)

(5)

(6)

where (Jij' Bij' Ui, Ei, and Di are the components of stress, strain, displacement, electric field
and electric displacement, respectively; ¢ is the electric potential; p, j;, Pr are material
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density, body force, and density of free charges, respectively; and Cijkh ekij, and cij are the
elastic stiffness, piezo-electric and dielectric constants, respectively. In the most general case
of anisotropy, there are altogether 45 independent constants in eqns (3) and (4), which
include 21 elastic stiffness, 18 piezo-electric and 6 dielectric constants. The present study is
concerned, in particular, with the transversely isotropic piezo-electric media as they rep­
resent what is possibly the most technologically important piezo-electric material. Thus
only 10 independent material constants are presented in eqns (3) and (4), which include 5
elastic stiffness, 3 piezo-electric and 2 dielectric constants.

If eijk = 0 the piezo-electric coupling is absent, eqns (1)-(6) reduce to 2 groups of
equations for the uncoupled elastic and dielectric problems, respectively. One group consists
of equations (1), (3) and (5), and the other one (2), (4) and (6).

The dynamic equations (1) and (2) can be expressed in terms of Ui and ¢ by virtue of
eqns (3) and (6). In the context of transversely isotropic piezo-electric media and in the
absence off, Pr' they are

(8)

(9)

(10)

where

Removing the inertia terms in the above equations, we have the corresponding equi­
librium equations for which Wang and Zheng (1995) have given a general solution. This
paper, however, concerned with the dynamic equations above, obtained three general
solutions expressed in terms of two functions IjJ and F where IjJ satisfies a second-degree
partial differential equation and F a sixth-degree partial differential equation. If all the
functions in those solutions are independent of time, these results shall become three general
solutions for the equilibrium equations. At this stage, each general solution possesses three
cases individually in accordance with the possibilities that the eigenvalues s;, (i = 1,2,3)
might be equal to each other. Included is the proof of the solution Wang and Zheng (1995)
obtained for only one case of the three general solutions and does not include the other
two cases of that specific solution. This indicates the extensiveness of the general solutions
presented in this paper.
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2. GENERAL SOLUTIONS OF DYNAMIC EQUATIONS

Firstly, introduce displacement functions l/J and G to represent the components of
displacement u and v, giving

al/J aG
u=---oy ax'

ol/J aG
V= ----ax oy' (11 )

Substituting eqn (II) into eqns (7) and (8), we have:

oB aA
---=0oy ax '

aB aA
:1 +;;- = 0,
uX uy

where

The solution of eqns (12) and (13) can be found of the form:

aH oH
A = ",.},' B=-

u ax

and H should satisfy

AH=O.

It can be proved that eqn (16) can be simplified as follows (see Appendix A):

A = 0, B = O.

(12)

(13)

(14)

(15)

(16)

(17)

(18)

Substituting eqn (II) into eqns (9) and (10), then listing them together with eqn (18), we
have

(19)

and

(20)

where D is a operator's matrix:
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a2 a2 0 0
C11 A+C44 - -p- -(C 13 +C44 )a -(elS+e31) oz

OZ2 ot2 'Z

a a2 i? 02
D= - (C 13 + C44 )A oz C44 A+C33-2 -P-2 elsA+e33-

az at OZ2

i3
_ (e ls A+e33 :2 ) 02

(e ls +e3dA oz GI1 A+G33 -
OZ2 az2

(21)

Calculate the determinant of matrix D, then introduce a new function F to let IDIF = 0,
giving

where

b = C33 [C44GII + (els + e31 )2] + G33 [ell C33 + d4 - (C 13+ C44)2]

+e33[2c44e IS +Clle33 -2(c I3 +C44)(eIS +e31)]

C= C44 [CII G33 + (elS +e3 d2
] +GII [CI] C33 + d4 - (C13 + C44)2]

+els[2c Ile33 +C44 e1S-2(C I3 +c44)(eIS +e31)]

d= cII(eis+c44GII)

9 = p2 G11

h = -p[eiS+(CII +C44)GII]

k = - p[2e lse33 + (C44 + C33)GII + (CII + C44)G33 + (e iS + e31 )2]

1= -p[eL+(C44+C33)G33]

Calculate the algebraic complements Aij of IDI based on each row and let

G = AilF, w = Ai2 F, c/J = Ai3 F, (i = 1,2,3).

(22)

(23)

Then eqn (23) represents three solutions for eqn (20) if F satisfies eqn (22). We thus obtain
three general solutions for the dynamic equations by substituting eqn (23) into eqn (11),
yielding

alj; aF
u = ay -Ail ox

olj; aF
V= ---A· I -

ox I oy

c/J = Ai3 F (i = 1,2,3)

(24)
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where t/f and Fsatisfy eqns (19) and (22), respectively, and

In cylindrical coordinates (r, e, z), the general solutions (24) take the form

w = A'2F

¢ = A i3 F(i= 1,2,3)

and in eqns (19), (22) and (25)-(27)

2287

(25)

(26)

(27)

(28)

correspondingly.
Furthermore, we shall obtain the general solutions for axisymmetric problems if we

let t/f = 0 and F is independent of ein eqn (28) or (24).
Ifwe substitute eqn (24) into eqns (5) and (6), and then substitute the results into eqns

(3) and (4), we can obtain representations of (Jy and D,. That means specific boundary
conditions and initial conditions can also be expressed in terms of t/f, F and their partial
derivatives.
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3. GENERAL SOLUTIONS FOR EQUILIBRIUM EQUAnONS

Equation (24) becomes three general solutions of the equilibrium equations if all the
functions in them are independent of time. Firstly, we get the equation which l/J satisfies at
this time from eqn (19) as follows:

(A+~)l/J =0,
oz~

where z~ = S~Z2, and

At the same time, eqn (22), which F satisfies, can be simplified to take the form

(A+ ~)(A+ ~)(A+ ~)F = 0,oZT oz~ oz~

where z; = s; Z2, (i = I, 2, 3) and s; are the three roots of the equation

(29)

(30)

(31)

(32)

The three roots s; can be expressed in terms of a, b, C, d and there will always exist a
real one among them, assuming sT is the real root with no loss of generality. Besides, we
further assume Re (sJ > °(i = 1,2,3).

Correspondingly, eqns (25)-(27) can also be simplified. For example, eqn (26) may be
rewritten as

(33)

where

m 1 = Gll(CI 3+c44)+eI5(eI5+ e31)

m2 = G33(C 13 +c44)+e33(e 15 +e31)

m3 = CIIG33+C44Gll +(eI5+e31)2

m4 = clle33+c44elS-(C13+c44)(elS+e31)' (34)

It is proved that there still exists a generalized Almansi's theorem in this case (see
Appendix B), which is analogous to the works done by Eubanks and Sternberg (1954). The
theorem is:

Let R be a region of the (x, y, z)-space such that a straight line parallel to the z-axis
intersects the boundary of R at no more than two points, then in the region R, the solutions
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of eqn (31) can be represented as follows:

(1) F=F1 +F2 +F3 fors;U= 1,2,3) are distinct;

(2) F = F j +F2 +zF3 forsT ¥= s~ = s~; and

(3) F = F j + zF2 +Z2 F3 for ST = s~ = sL

where F j satisfy the following equations, respectively, giving

(A+~)Fj=O, U=I,2,3).oz;
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(35)

(36)

Hence, by utilizing this theorem, every solution of the six-degree partial differential
equation (31) can be represented by the solutions of eqn (36) which is only second degree.
Furthermore, the theorem can be used to rewrite our general solutions. For example, in the
first case of eqn (35), by virtue of eqns (24), (33), (34) and (36), the general solution can
be rewritten as

olj; 3 04 P
u=-+Lr.x.s--'oy j~ I " ox oz;

where

For further simplification, let

then eqn (37) becomes:

olj; 3 04 P
V = --+ ~ r.x.s--''" L.' , 3uX i~ I oy OZj

3 04p
W= L {3j-4'

j~ I OZj

(37)

(38)

(39)

(40)
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where 1/10 = -1/1 and
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(41)

Besides, in view of eqns (29), (36), and (39), we obtain the equation which 1/1;, respectively,
satisfies:

(42)

Clearly, the general solution represented by eqn (40) is consistent with the result Wang and
Zheng (1995) obtained.

4. GENERAL SOLUTIONS FOR DECOUPLED PROBLEMS

As stated before, when el5 = e31 = e 33 = 0 piezo-electric coupling is absent, the gov­
erning equations reduce to two groups of equations which will be treated separately. At
this stage, the general solutions represented by eqn (24) will also reduce correspondingly
to the general solutions for the decoupled problems.

Firstly, in this case, eqn (22) can be rewritten as:

LMF=O,

where Land M are two operators:

Secondly, let

MF=f

Then by virtue of eqn (43) we obtain the equation which! satisfies:

Lf=O.

(43)

(44)

(45)

(46)

The three general solutions stated by eqn (24), corresponding to i = 1, 2, 3, reduce to
the following three solutions, respectively:

v= - 01/1 _ (c A +c ~ _p~) of
ox 44 33 OZ2 Ol2 oy

¢ = 0;

(47)
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¢ = 0;

u = v = w = 0, ¢ = LF.
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(48)

(49)

Equations (47) and (48) are the general elasticity solutions for transverse isotropy.
For equilibrium problems, let qJ = (C13+C44)f, then eqn (48) is the general solution Hu
(1953) obtained [see also Lekhniskii (1981)]. The general solution represented by eqn (47)
has not been published. In view of eqn (43), the function ¢ in the third general solution
stated by eqn (49) satisfies M¢ = 0 which is the equation the electric potential must satisfy
in dielectric problems.

5. PROBLEM FOR A HALF-SPACE WITH LOADS AT THE BOUNDARY

Wang and Zheng (1995) investigated the problem of a piezo-electric half-space with
concentrated loads at the boundary. Sosa and Castro's study (1994), however, was con­
cerned with concentrated loads at the boundary of a piezo-electric half-plane. In present
study, as an example of applications of the general solutions, we now consider the problem
for a half-space, given the forces and electrical displacement at the boundary.

We assume the following boundary conditions on the surface of a half-space (z ~ 0),
giving

(Jz = Po(x,Y), r" = Qo(x,y), r ,z = 0, Dz = To(x,y) onz = O. (50)

The Fourier transform for a functionf(x,y) is defined as

- 1 f+CD f+CD .
f(:/., [3) = 2n _ CD -CD f(x, y) el(aX

Hy
) dx dy. (51)

Then, we can obtain the Fourier transforms of eqns (24), (33), (29), (31), and (50),
respectively, yielding

it = -i[3l{J+i:/.A21 F

v = ilXt/J+ i[3A2J
IV = AnF

IP = A23 F; (52)

(53)



2292

and

where
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(8
2 2)(82 2)(82 2)---p --p --p F=O

8zT 8z~ 8zj

cr z = Po, f xz = Qo

f yz = 0, Dz = to onz = 0,

(54)

(55)

(56)

(57)

It has assumed that the function t/J and its first-degree partial derivative, F, and its partial
derivatives of degree one to degree five tend to zero as x2 +y2 -4 00.

The general solutions for eqns (54) and (55) can be readily obtained; under the
conditions that the quantities u, v, wand ¢ tend to zero as z -4 00, the functions I[J and F
have the following form

3

F = L kn e- PSnZ for Si(i = 1,2,3) are distinct;
n=l

(58)

(59a)

(59b)

(59c)

where kn(n = 0, 1,2,3) are arbitrary constants.
Substituting eqns (58) and (59) into eqn (52), we obtain the representations of il, v, W

and ;Po Then, by utilizing the Fourier transforms of the constitutive relations, the rep­
resentations of the crz , fyZ' f w D, etc. can be obtained. For example:

(60)

(61)

(62)

(63)

Last, by virtue of eqns (60)-(63) and (56), we can obtain four algebraic equations
for kn (n = 0, 1,2,3). Solving this group of equations and substituting the values of kn

(n = 0, 1,2,3) into eqn (52), then inverting the equation by applying inverse formula for
the Fourier transform, we thus obtain the solutions for the boundary-value problem
considered.

In particular, assuming that
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Po(x,y) = P<S(x)<S(y),

Qo (x, y) = Q<5(x)<5(y),

To (x, y) = T<5(x)b(y),

2293

(64)

and taking the case of eqn (59a) as an example, we now can obtain the solutions for the
boundary-value problem considered when 8 1, 82 and 83 are distinct, giving

(65)

(66)

(67)

(68)

where Ri = Jx 2 +l +z;, Rt= Ri+Zi, and d" dz, dd' nij' Ii}, bij (i = 5, 6, 7, 8;j = 0,1,2,
3), which are tabulated in Appendix C, are coefficients expressed in terms of material
constants.

6. CONCLUSIONS

(1) Three general solutions for the coupled dynamic equations for transversely-iso­
tropic piezo-electric media have been obtained and are represented by eqn (24). They
become the general solutions for the corresponding equilibrium equations on the removal
of those terms concerning the derivatives of time.

(2) It is proved that the solution Wang and Zheng (1995) obtained is consistent with
eqn (40), one case of one of the three general solutions obtained in this paper and does not
include the other two cases of that specific solution.

(3) Two general elasticity solutions for the dynamic equations for transverse isotropy
have been obtained and are represented by eqns (47) and (48). They become two general
solutions for the equilibrium equations if all the functions in them are independent of time,
one of which is the solution Hu (1953) obtained, the other one has not been published.

(4) For the problem of a half-space with concentrated loads on the surface, we can
obtain limiting explicit solutions such as eqns (65)-(68) for the three cases of eqn (59)
respectively, by utilizing the general solutions presented in the paper.
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APPENDIX A

In this section we prove the possibility of eqn (18). If we see eqn (II) as the equation for the solutions of 1/1
and G by giving u and v, the resolvent form for displacement represented by eqn (II) is not single. In fact, the
homogeneous equations of eqn (II) have nontrivial solutions namely 1/10 and Go which satisfy:

In view of eqn (AI), we have:

Al/lo = 0, AGo = 0.

(AI)

(A2)

Thus, if the functions 1/1 and Gin eqn (II) are replaced by 1/1 + 1/10 and G+ Go, respectively, they still represent
the same displacement as before. Now, replace 1/1 and G by 1/1 + 1/10 and G+ Go, respectively, in eqns (14) and (15),
and then substitute the results into eqn (16). At this stage, if there exist:

(
a' 8') oH

c66A+c44~.-p- 1/10 =-a '
a=' at' x

eqn (16) can be simplified into eqn (18). In view of eqn (A2), eqn (A3) can be rewritten as:

(
a' a') aH

C44~-P- Go =-
az' at' oy

(
a' e') aHC44~ -p- 1/10 =-::;-
az' at' ox

Introducing a coordinate transformation defined as

¢ = =-c,t, '1 = z+c,t,

where

eqn (A4) becomes

a21/10 __1_ eH aGo I aH
a¢ a'l - 4C44 ex' o¢ a'l = 4C44 oy .

Now define

(
¢+'l 'l-¢) I f(f ( ¢+'l 'l-¢) )Ho(.'<,y,z, t) = Ho x'Y'~2-' 2c, = 4C44 H x'Y'~2-' 2c, d¢ d'l

(A3)

(A4)

(AS)

(A6)

(A7)

(A8)

of which the right-hand side means that the integration of H for '1 takes place once the integration for ¢ has taken
place.

Clearly, if we let

(A9)

then eqn (A7) is satisfied; and since function H satisfies eqn (17), the functions 1/10 and Go represented by eqns
(A9) satisfy eqn (AI).

APPENDIX B

In this section we prove a generalized Almansi's theorem, stated as follows:
Let R be a region of the (x, y, z)-space such that a straight line parallel to the z-axis intersects the boundary

of R at no more than two points. Let Fn(x,y, z) be a solution of
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nnV;Fn = vfv~ ... V;;_IV;;Fn = 0 inR,
i=l

where

2295

(BI)

V; = A+c;D',

and the Ci are constants. Then Fn admits the representation

o
D=­oz' (B2)

Fn(x,y,z) = Fn_l(x,y,z)+zmpn)(x,y,z),

where Fn_1 and pn), respectively, satisfy

n-InV;Fn _ 1 = 0,
i=!

and m(O ::;: m ::;: n - I) is the number of the coefficients c; (i = I, 2, ... , n-I) which are equal to c;;.
To prove this theorem, we need some preliminaries:

(I) We first note the trivial identities

V;[A(z)B(x,y,z)) = AV;B+c;(A."B+2A,B,),

and observe that F., also satisfies eqn (B7).
(2) As a further preliminary, we prove that if F (x, y, z) satisfies V; F = 0 and m > 0 is an integer, then

Let k = m-l. Clearly, eqn (BS) holds for m = I and 2. We proceed by induction. Thus, assume

Then, by hypothesis and eqn (B6),

(B3)

(B4)

(B5)

(B6)

(B7)

(BS)

Next, let k = m. Again eqn (BS) evidently holds for m = I, in fact, when m = k = I, Vl(zF) = 2c;F, = 2c;DF.
Using induction once more, assume

Then,

This completes the proof of eqn (BS).
Turning to the proof of the theorem, we may assume with no loss of generality that

c; = c~ (i = n~m,n-m+ 1,_ . . In-I)

c;#c;; (i=I,2, ... ,n-m-I).

In view of eqn (B3), Fn _ 1 admits the representation

and eqn (B4), by virtue of eqn (BIO), becomes

(B9)

(BIO)
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n-I n-1 n-InV;Fn_ 1 = nV;Fn- nV;(z"'F(n}) = o.
i= I ;= 1 i=\

(B11)

Assume that po) satisfies eqn (B5). Then, by virtue of eqns (B7) and (B8),

n-I n-m-inV; (z"'F(n}) = n v;[v~m(zmFln»l

;=1 1=1

n-m-I

= 2mm! c~mDm n V?F(n) = HD 2n -m- 2F(nl,
i=1

where
n-m-I

H= 2mm!c~m n (c?-c~).
i=1

In view of eqn (BI2), eqn (BII) becomes

n-I

HD 2n - m- 2Fn) = nV? Fn·
i= I

Equation (BI4) evidently has a particular solution

I n-I

FIn) = _D- 2n +m+ 2 nV 2F
* H i=1 I "'

where the operator D- I is defined as

D-1G(x,y,z) = f' G(x,y,~)d~,
'0

(BI2)

(BI3)

(BI4)

(BI5)

(BI6)

and Zo is a point on the boundary of R. On the other hand, the solution for the homogeneous equation of (BI4),
which is of the form

may takes the form

2n-m-J

F.-I = I z"fk(x,y),
k=O

where fk (x, y) are arbitrary functions. Thus, we may write the general solution of eqn (BI4) as

Substituting eqn (BI9) into eqn (B5), we have

And by virtue of eqns (BI8), (BI5) and (BI), we have

2n-m- 3

V~Fbn) = V~ I z"fk(X,y)
k=O

= z2n-m-3 Af2n-m-3 +z2n-m-4 A!2n-m_4

2n-m-5

+ I [Afk + (k+2)(k+ I)c~dz",
k=Q

In view of eqn (B22), we know V~F~) takes the following form

2n-m-3

V~F~) = I t'hk(x,y),
k=O

where hk(x,y) are all known since Fn is known and F~} is determined by eqn (BI5).
Substituting eqns (B21) and (B23) into eqn (B20) and comparing the coefficients before z", we have

(BI7)

(BI8)

(BI9)

(B20)

(B21)

(B22)

(B23)
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/\f2n m-,+h'n_m_l = 0

A!2n-m-4+h2n-m-4 = 0

A,j;. +(k+2)(k+ I)c~+,+hk = 0, (k = 0, I, ...• 2n-m-S).
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(B24)

(B2S)

(B26)

Each of the eqns (B24)-(B26) is Poisson equation which is very easy to find a particular solution. That means fk
may be obtained one by one. Thus, by the construction of!" the Fn) obtained from eqn (BI9) satisfies eqn (BS).
Meanwhile, the Fn_1 obtained by substituting this Fn1 into eqn (B 10) also satisfies eqn (B4). This completes the
proof.

APPENDIXC

n02 = -{c44[-(mI3m4d+mllm4,]sOs,(-ml +m2s~)1

n03 = C44[ - (m 12 m4') +mj jm42]sOs3( -m, +m,si)

nS2 = - {C44[ -(mlJm4') +mj,mdsOs2( -m, +m,sl)l

n53 = C44[ - (m'2m4') +m j , m42]sOs,( -m, +m2si)

n12 = -{c44[-(mlJm4,)+m"m43]sO[-(m,sl)+c"E'I +C44SjE"J)

n73 = c44[-(m12m4l)+mllm41]sO[-(m3s~)+CIlEI' +C44S jE33]
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b" = [- (m 12 m3Jl +m"m,,]s,( -m, +m,si)

b61 = [-(m13m,,)+m'2m,,]S, (-m, +m,si)

b6, = (m13mJl -m"rn33)S,( -m, +rn,sl)

b63 = [-(m 12 m Jl )+m"rn,,]s,(-rn,+rn,si)

Ding Haojiang et al.

d~ = 2n[-(mI3m32m41)+mI2m33m41 +mL\m31m42 -mllm~Bm42-m1Zm31m43 +mllrn32m43]

dy = 2nc44(m13m32m41 -rn12mBm41 -mI3rn:Hm42 +mllm33m42 +m12m31m43 -m 11 m 32 m43)sO

d(j = 2n(rn13m32m41 -m12m33m41 -m1]m31m42 +m11mBn142 +m12m31m43 -m] \m32m43}

mIl = C13eTs s i +cI3elSe3Is\-clleISe33Sj +c33eT5s~+2c33e]5e31s~

+ c33e~ Isf - 2cl3e15e~qsf - 2C13e31 eBsf - C44e:H e33sf + ell e~3S~

+c 44e31 e33si - ('II C44£11 - C13C44Sf Ell + ('II C44ST £33 +C 13 C44 s ie:,3

m:n - (ell e~ 5) -Cl3ef 5S~ - C13e15e31S~ + C44e~lsi +ell eI5e33S~

+ c 44e31 5 2 ,s11 - ('II C33s2ell + C44e33s~ell +('II elSSZ£33 + ('\ 3e15S~E33

rn43 = ef Se 31 53 +el se31 53 +ef 5e33S~+ e\ se:31 e33S~ +C I 3e :Q 53£11


